Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 28(10): e13328, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753570

RESUMO

Cocaine predictive cues and contexts exert powerful control over behaviour and can incite cocaine seeking and taking. This type of conditioned behaviour is encoded within striatal circuits, and these circuits and behaviours are, in part, regulated by opioid peptides and receptors expressed in striatal medium spiny neurons. We previously showed that augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP), while opioid receptor antagonists attenuate expression of cocaine CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. To address this, we generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing medium spiny neurons and tested them in a cocaine CPP paradigm. Low striatal enkephalin levels did not attenuate acquisition of CPP. However, expression of preference, assessed after acute administration of the opioid receptor antagonist naloxone, was blocked in females, regardless of genotype. When saline was paired with the cocaine context during extinction sessions, females, regardless of genotype, extinguished preference faster than males, and this was prevented by naloxone when paired with the cocaine context. We conclude that while striatal enkephalin is not necessary for acquisition, expression, or extinction of cocaine CPP, expression and extinction of cocaine preference in females is mediated by an opioid peptide other than striatal enkephalin. The unique sensitivity of females to opioid antagonists suggests sex should be a consideration when using these compounds in the treatment of cocaine use disorder.


Assuntos
Analgésicos Opioides , Cocaína , Feminino , Masculino , Animais , Camundongos , Peptídeos Opioides , Naloxona/farmacologia , Antagonistas de Entorpecentes , Recompensa , Encefalinas/genética , Cocaína/farmacologia
2.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865224

RESUMO

Drug predictive cues and contexts exert powerful control over behavior and can incite drug seeking and taking. This association and the behavioral output are encoded within striatal circuits, and regulation of these circuits by G-protein coupled receptors affects cocaine-related behaviors. Here, we investigated how opioid peptides and G-protein coupled opioid receptors expressed in striatal medium spiny neurons (MSNs) regulate conditioned cocaine seeking. Augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP). In contrast, opioid receptor antagonists attenuate cocaine CPP and facilitate extinction of alcohol CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. We generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing MSNs (D2-PenkKO) and tested them for cocaine CPP. Low striatal enkephalin levels did not attenuate acquisition or expression of CPP; however, D2-PenkKOs showed faster extinction of cocaine CPP. Single administration of the non-selective opioid receptor antagonist naloxone prior to preference testing blocked expression of CPP selectively in females, but equally between genotypes. Repeated administration of naloxone during extinction did not facilitate extinction of cocaine CPP for either genotype, but rather prevented extinction in D2-PenkKO mice. We conclude that while striatal enkephalin is not necessary for acquisition of cocaine reward, it maintains the learned association between cocaine and its predictive cues during extinction learning. Further, sex and pre-existing low striatal enkephalin levels may be important considerations for use of naloxone in treating cocaine use disorder.

3.
Cell Rep ; 40(13): 111440, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170833

RESUMO

Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Analgésicos Opioides/farmacologia , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Corpo Estriado/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Encefalinas/metabolismo , Encefalinas/farmacologia , Camundongos , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...